

Flanged seals with extended diaphragm S-T

Application

The diaphragm seal is a pressure-transmitting, diaphragm-type device. The pressure signal is sent to the cooperating pressure measuring device (pressure transmitter, pressure gauge) through manometric liquid filling the space between the separating diaphragm of the seal and the pressure measuring device. The diaphragm seal task is to isolate the pressure measuring device from damaging impacts caused by either medium or installation:

- low or high temperature, increased viscosity, impurities;
- tendency to crystallisation on the tank walls;
- vibrations of the installation (remote diaphragm seal).

The flanged diaphragm seal with extended diaphragm is typically applied to measure the pressure or level of the media in a multi-walled tank, where the separating diaphragm should be placed close to the inner wall of the tank.

Recommended minimum measuring range (bar), depending on the type of the set: pressure measuring device - diaphragm seal

			_		
Pressure	Seal type	Wykonanie separatora			
measuring device		DN50 PN40	DN80 PN40	DN100 PN40, A 109	
Smart transmitters*	direct	2	0.2	0.1	
	remote (2 m)	6	0.5	0.25	
PCE-28	direct	0.1	0.1	0.1	
	remote (2 m)	2	0.5	2.5	
PC-50	direct	0.1	0.1	0.1	
	remote (2 m)	2	0.5	2.5	
Ø63 manometer	direct	2.5	1	1	
	remote (2 m)	6	2.5	1	
Ø100 manometer	direct	6	1	1	
	remote (2 m)	6	2.5	1	
Ø160 manometer	direct	6	1	1	
	remote (2 m)	6	2.5	1	

^{*} The ranges given in the table for smart transmitters should be taken as set ranges

Recommendations

The essential metrological problem at diaphragm seals operational use is an absolute thermal zero error, resulting from the thermal expansion of the manometer liquid. The expansion effect must be compensated for with the separating diaphragm flexibility.

To minimise this effect, it is advisable to:

- use capillaries as short as possible, in this way the volume of manometer liquid will be reduced;
- use the greater diameter seals, in order to maximise the separating diaphragm flexibility;
- locate the capillaries in the places, in which the temperature fluctuations will be minimal.

Additional absolute zero error resulting from ambient temperature fluctuations, depending on the type of the set: pressure transmitter - diaphragm seal with a 100 mm of tube

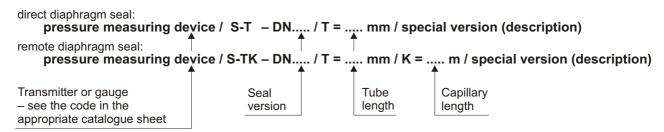
Diaphragm seal type	Absolute zero error per 10°C for the diaphragm seal			
	DN50	DN80	DN100	
direct	2 mbar	0.6 mbar	0.4 mbar	
remote (2 m capillary)	10 mbar	2 mbar	1 mbar	

An additional zero error, resulting from temperature fluctuations in a medium, depends on the temperature gradient in the oil-based diaphragm sealing system. The error value is, in any case, significantly smaller than the error value shown in the table.

Temperature range of measured medium

	Direct diaphragm seal		
Manometric liquid	Underpressure measurements	Overpressure measurements	
high-temperature (DC)	-10150°C	-10315°C	-30150°C
low-temperature (AK)	not recommended for measurement	-60200°C	
	of pressures < 0.5 bar ABS		
Note: When operating with an			

Maximum pressure for PN40 - 40 bar


Material of diaphragm, tube and flange 316Lss

Important: contact face in diaphragram seal DN50 have a milled slot for a gasket (acc. to DIN 2512 FormN). Version without any slot available on request. (acc. to DIN 2526 FormE)

Special versions

Diaphragm seal for pressures up to 100 bar (PN100) Diaphragm seal meeting ANSI standards Capillary outlet at the axis of the diaphragm seal Direct diaphragm seal for medium temp. over 150°C Others

Ordering procedure

Example: APC-2000ALW pressure transmitter, nominal measuring range 0 ÷ 25 bar, DN 50 remote flanged seal with extended diaphragm, 100 mm tube, 2 m capillary.

APC-2000ALW / 0 ÷ 25 bar / S-TK - DN50 / T = 100 mm / K = 2 m